小学数学建模教学初探

发布日期 : 2019-05-17 点击次数 : 来源 : 《山东教育》(小学刊)

内蒙古自治区赤峰市实验小学   张海燕

 

一、明确概念   了解内涵

我们所说的数学模型指的是用精准的数学语言去模拟和描述实际生活中的空间形式、数量关系等,其主要特点就是运用数学语言将客观现象或者事物的特点、主要关系表述出来,使之成为一种具体的数学结构。例如,小学数学问题中,“5棵白菜与2棵白菜堆起来是多少棵?”“5只羊与2只羊加在一起是多少只?”这样问“一共有多少”的问题有很多,如果每次都一遍遍数太麻烦,于是运用加法数学模型可以解决很多的类似问题。同时,当许多相同的数加在一起时,则可以运用乘法数学模型。又如,“小芳家的储藏室长16分米、宽12分米,如果使用边长为整分米数的正方形瓷砖来铺设储藏室地面(使用瓷砖都是整块的),边长为多少分米的瓷砖合适?其最大边长是几分米?”当小学生面对这样的问题时,也可以运用数学模型来解决。

在小学数学建模教学过程中,不少人认为建模是学者、专家的事情,作为小学生来说只能运用模型或者找一个生活原型来加深对数学模型的认识和理解,而无法做到创建数学模型。然而笔者不这么认为,其原因主要有:第一,小学生也有创建数学模型的可能与机会;第二,一旦学生面临实际问题时,可能会出现没有现成的模型来套用的情况,因此学生自己必须通过探索研究,找到适合的数学模型,从而解决问题。此外,在小学数学建模的教学过程中,还需要依据不同阶段的学生特点,对其提出不同的要求,具体来说主要分为以下几个阶段:第一,学生以具体形象思维为主,此时较难掌握建模的方法,因此教师必须逐步培养其建模思维,逐步让学生运用数学知识来解决生活中的实际问题;第二,学生从具体形象思维向抽象逻辑思维过渡,此时教师应让学生充分感受到数学建模的过程,并逐步掌握建模要领,提升其运用建模知识解决实际问题的能力。

二、体现过程   循序渐进

第一,准备模型,丰富问题情境,激活已有经验。众所周知,模型的建立离不开具体的现实情境,因此,只有对问题的情境有了充分的认识,才能有效建模。因此,作为教师必须要善于开发学生丰富问题背景的能力,充分利用身边的生活素材来创建与实际生活相符的生活情境,从而为创建模型提供丰富的体验。

比如在“确定起跑线”一课的教学过程中,某教师先播放了400米赛跑的片段,一一展示了跑道的整体状况、运动员起跑瞬间、比赛过程及最后的冲刺等情况。看完之后,学生会产生许多疑问:为什么运动员不在同一起跑线上?为什么跑弯道时,内道运动员能够超过外道运动员?然后学生就会提取相关的信息,比如:跑道是由弯道和直道两部分组成,有着相同的终点,外道一圈比内道长,因此起跑线也就不同。此时教师需要做的就是用课件对学生的这些问题及答案一一予以证实。这种运用生活中熟悉的事物充分引入课堂教学内容中,以情境的方式展示给学生的方式,对激活学生现有的生活经验有着较大的帮助,学生有了丰富的背景作依赖,就能更好地解决本课的数学模型问题。

第二,假设模型,把握本质特征,提出合理假设。在小学数学建模的教学过程中,可依据建模的目的及建模对象的特征来观察、分析、抽象、概括实际的数学问题,并用准确的数学语言来提出合理的假设,这一点很关键。此外,在这一过程中还要求学生能够善于分别问题的主次方面,为建模提供正确的方向。

第三,建构模型,合理选择策略,亲历建模过程。在数学建模过程中,策略选择会对建模过程产生直接的影响。要知道,合适的策略能够帮助学生精准抓住问题的实质,因此作为教师而言,应立足与学生的认知特征和认知起点,充分让学生亲历运用合适策略进行建模的整个过程。

第四,应用模型,回归实际问题,拓展模型应用。大家都知道,建模的目的就是为了更好地对社会现象及自然现象进行描述,为此,建立数学模型的终极目的还是要回归实际问题,从而更好地认识自然,改造自然。此外,在数学建模过程中还应将模型有效地还原成具体或者直观的数学现实,并教会学生利用建模过程中所运用的策略和方法来解决其他问题,只有这样,数学建模教学才能走得更远。

三、针对学情   把准目标

第一,正确处理数学知识与小学生认知水平的关系。小学阶段,学生的逻辑思维与感性经验有着较为密切的联系,有着明显的形象性。因此,需要密切联系生活实际进行数学建模教学,同时还要符合小学生的心理发展规律及认知特征,并逐步向小学生渗透建模的思想,培养其建模能力。

第二,正确定位建模的教学定位。对此,我们必须认识到,学生学习数学建模方法的过程是一个不断深化、不断积累的过程。作为教师,应在教学实践中充分结合数学知识,反复对建模方法加以渗透,并帮助学生正确理解题意、解决问题,让学生充分感受建模过程的重要意义。

第三,正确处理建模教学的两面性。具体来说,主要表现为以下两点:一是形象、直观、简洁的一面,其对学生理解、掌握及运用相关的数学知识解决问题有着积极的作用;二是固定、模式化的一面又极大地限制了学生的思维。因此,在数学建模教学过程中,作为教师应时刻注意把握好形象、直观、简洁的一面,尽可能避免解决问题的模式化、固定化。

 

(《山东教育》2017年4月第10期)